USE OF A 8-TRIMETHYLSILYLETHOXYMETHYL ESTER AS A PROTECTING GROUP. A FACILE PREPARATION OF l-HYDROXYCYCLOPROPANECARBOXYLIC ACID PHOSPHATE

E. W. Logusch

Monsanto Agricultural Products Company 800 N. Lindbergh Boulevard St. Louis, Missouri 63167

Summary: The potential use of β -trimethylsilylethoxymethyl (SEM) esterfor temporary carboxyl blocking is illustrated in a preparation of the title compound.

1-Hydroxycyclopropanecarboxylic acid phosphate, I, is a potent reversible inhibitor¹ of enzymes utilizing phosphoenolpyruvate (PEP), such as phosphoenolpyruvate carboxylase (EC $4.1.1.31$)², which catalyzes the carboxylation of PEP, 2, to give oxaloacetate, 3. We recently had need for an alternative to the previously published synthesis¹, which proceeds in low overall yield and requires the use of ion-exchange chromatography. We report herein a facile synthesis of 1 which utilizes a 8-trimethylsilylethoxymethyl (SEM) ester as a temporary, easily removable carboxyl protecting group.

Synthesis of 1 commences with the known 1-hydroxycyclopropanecarboxylic acid $(6a, 5cheme 1)$. The latter is prepared by bromination of 1,2-bis(trimethylsiloxy)cyclobutene 5³, followed by workup with aqueous sodium hydroxide.⁴ Attempts to phosphorylate 6a directly failed to yield a clean product, and while ester $6b$ (diazomethane; bp 105-108°, 20 mm Hg) could be phosphorylated (NaH, THF, diethyl chlorophosphate), only the phosphate group of 1 could be de-esterified in good yield (TMS iodide). It occurred to us that a reasonable alternative approach would be to free the carboxyl group first (Scheme 2), since the phosphate group could then

4195

be expected to undergo facile solvolysis via the intermediacy of a cyclic annydride $(12+13+14)$. Similar accelerated solvolyses occur in the case of phosphoenolpyruvate6 and analogs.7

The choice of esters suitable for a compound of type 12 was restricted somewhat by the destruction undergone by 6a under DCC-mediated esterification conditions, which suggested the use of an alkoxymethyl ester.⁸ While most are accessible through mild alkylations, considerations of stability or deprotection influenced us to apply the β -trimethylsilylethoxymethyl (SEM) group⁹ to our purposes.

COOEt
 COOEt a OTMS \mathbb{C}^{coor} **OOEt OTMS** $6a$ R=H; $6b$ R=CH₃ **4** $\overline{5}$ Sime_2 **COOSEM D< OPO,#z** COOCH, OPO₃Et, **9** $\overline{8}$ \overline{z} COOH coo0 **COOH R** . **ZNH,R@** OPO₃Me₂ $OPO₃H₂$ OPO₃H^O 10 $\overline{1}$ $\frac{11}{2}$ R= \bigcap **SCHEME 2** DН PO.R OPO,R,

 13

 12

 $14\,$

SCHEME, 1

Thus 8 (Scheme 1) was readily obtained by treatment of 6a with triethylamine (1.15 eq) and SEM chloride (1.05 eq) in dry THF at 0'. Ester 8 could be isolated in 80% yield by MPLC on silica gel¹⁰, but further reaction with additional triethylamine (1.15 eq), diphenyl chlorophosphate (1.1 eq) and N,N-dimethylaminopyridine (0.05 eq) afforded, after aqueous workup, the phosphate 2. The latter could be isolated in 70% yield by MPLC on silica gel¹⁰, but the crude product was sufficiently pure for use in the next step. Thus exposure of 9 to methanol- D_4 at ambient temperature effected solvolysis at the acetal carbon of the SEM group of 9, with a $t\frac{1}{2}$ of about 12 hr \lceil ¹H NMR shift of acetal singlet from 5.2 ppm to 4.5 ppm (downfield) relative to the SEM trimethylsilyl group]. Only a slight loss (10%) of one phenol from 9 was observed in 12 hr $[31P$ NMR shift from -13.4 ppm to -6.8 ppm (upfield) relative to 85% H₃PO₃]. Complete displacement of the SEM group occurred between 2 hr and 5 hr at reflux¹¹, accompanied by 60% consumption of the diphenyl phosphate group $[31P]$ NMR relative intensities of peaks at -13.4 , -6.8 and 0.6 ppm: 37% , 56% , 7%]. Complete conversion to 10 [0.6 ppm] required about 48 hr of reflux. Acid-base extraction with ether (cold dilute N_a HCl) and trituration of the solid crude product with cold ether afforded pure 10 as a hygroscopic white solid, mp $71-73^\circ.1^\circ.1^\circ$ The overall yield of 10 from $6a$, without purification of intermediates, was 60%.

The free acid 10 was dissolved in water and was allowed to stand for several days, or was heated at 40° for a shorter period, until 31° NMR indicated complete hydrolysis of 10. Removal of water on the rotary evaporator and drying in vacuo over magnesium perchlorate furnished 1 as a colorless foam. Treatment of 1 in cold acetone with cyclohexylamine (3 eq) and recrystallization of the resulting solid from methanol-acetone afforded the bis-cyclohexylamine salt 11, mp 173-175°, in 65% yield from $10.10, 13$

In conclusion, it should be noted that the use of β -trimethylsilylethoxymethyl (SEM) esters to mask carboxyl groups affords compounds sufficiently stable for chromatography and routine manipulation, but which may be readily deprotected without affecting either acid or base-sensitive functionalities.

References and Notes

- 1. M. H. O'Leary, W. J. DeGooyer, T. **M.** Dougherty and V. Anderson, Siothem. Biophys. Res. Commun., 1981, 100, 1320.
- 2. M. H. O'Leary, Ann. Rev. Plant. Physiol., 1982, 33, 297.
- 3. J. J. Bloomfield and J. M. Nelke, Org. Synth., 1973, 53, 158.
-
- 4. Bayer AG, U.S. Pat. 3,813,432, and reference 1 above. Crude 6a is best obtained by continuous extraction, and purified by sublimation (80-90°, 0.1 mm Hg).
- 5. N. E. Jacobsen and P. A. Bartlett, J. Am. Chem. Soc., 1983, 105, 1613.
- 6. B. L. Hirschbein, F. P. Mazenod and G. M. Whitesides, J. Org. Chem., 1982, 47, 3765.
- 7. J. A. Stubbe and G. L. Kenyon, Biochemistry, 1971, lo, 2669.
- 8. T. W. Greene, "Protective Groups in Organic Synthesis", Wiley, New York, 1981, Chapter 5.
- 9. B. H. Lipshutz and J. J. Pegram, Tetrahedron Lett., 1980, 21, 3343.
- 10. Spectral data: 1 H NMR spectra (60 MHz) were recorded on a Varian EM 360 spectrometer. Shifts reported as ppm downfield from tetramethylsilane. $31P$ NMR spectra (40 MHz) were recorded on JEOL FX-100 fourier transform spectrometer using proton irradiation and external deuterium lock. Shifts reported as ppm downfield (positive) and upfield (negative) from 85% H₃PO₄. 8^{1} H (CDCl₃): 0.05 (9H, s), 0.7-1.5 (6H, m), 3.65 (2H, t, $J = 4$), 5.30 (2H, s). 9¹H (CDC1₃): 0.05 (9H, s), 0.90 (2H, t, $J = 4$), 1.5 (4H, m), 3.65 (2H, t, $J = 4$), 5.25 (2H, s), 7.30 (10H, s); ${}^{31}P$ (CDCl₃): -13.3. 10¹H (CDCl₃): 1.5 (4H, m), 3.85 (6H, d, $J = 5.5$); ${}^{31}P$ (CDCl₃): 0.03. $I^{1}H$ (CD₃OD): 1.4 (m); ${}^{31}P$ $(CD_3OD): 1.67. 11$ ¹H $(CD_3OD): 1.2-2.3$ (12H, m), 2.8-3.4 (14, m); $31p$ (CD₃OD): 1.54.
- 11. No decomposition of the SEM group to yield ethylene was observed under these conditions. As pointed out by a referee, the remarkably accelerated solvolysis of the SEM group in the present instance may be due to anchimeric assistance by the neighboring phosphate group, as illustrated below:

- 12. Calculated for $C_6H_{11}O_6P_1$: C, 34.30; H, 5.28. Found: C, 34.46; H, 5.18.
- 13. Calculated for $C_{16}H_{33}N_2O_6P_1$: C, 50.52; H, 8.74; N, 7.36. Found: C, 49.92; H, 8.63; N, 6.99.

(Received **in USA 12 June 1984)**